Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Hyg Environ Health ; 251: 114187, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2321848

ABSTRACT

Majority of the viral outbreaks are super-spreading events established within 2-10 h, dependent on a critical time interval for successful transmission between humans, which is governed by the decay rates of viruses. To evaluate the decay rates of respiratory viruses over a short span, we calculated their decay rate values for various surfaces and aerosols. We applied Bayesian regression and ridge regression and determined the best estimation for respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS-CoV), influenza viruses, and respiratory syncytial virus (RSV); the decay rate values in aerosols for these viruses were 4.83 ± 5.70, 0.40 ± 0.24, 0.11 ± 0.04, 2.43 ± 5.94, and 1.00 ± 0.50 h-1, respectively. The highest decay rate values for each virus type differed according to the surface type. According to the model performance criteria, the Bayesian regression model was better for SARS-CoV-2 and influenza viruses, whereas ridge regression was better for SARS-CoV and MERS-CoV. A simulation using a better estimation will help us find effective non-pharmaceutical interventions to control virus transmissions.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Bayes Theorem , Respiratory Aerosols and Droplets
2.
J Water Health ; 20(2): 459-470, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1690567

ABSTRACT

Estimating and predicting the epidemic size from wastewater surveillance results remains challenging for the practical implementation of wastewater-based epidemiology (WBE). In this study, by employing a highly sensitive detection method, we documented the time series of SARS-CoV-2 RNA occurrence in the wastewater influent from an urban community with a 360,000 population in Japan, from August 2020 to February 2021. The detection frequency of the viral RNA increased during the outbreak events of COVID-19 and the highest viral RNA concentration was recorded at the beginning of January 2021, amid the most serious outbreak event during the study period. We found that: (1) direct back-calculation still suffers from great uncertainty dominated by inconsistent detection and the varying gap between the observed wastewater viral load and the estimated patient viral load, and (2) the detection frequency correlated well with reported cases and the prediction of the latter can be carried out via data-driven modeling methods. Our results indicate that wastewater virus occurrence can contribute to epidemic surveillance in ways more than back-calculation, which may spawn future wastewater surveillance implementations.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Wastewater , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring , RNA, Viral , Prevalence
3.
Sci Total Environ ; 807(Pt 2): 150722, 2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1447139

ABSTRACT

Polyethylene glycol (PEG) precipitation is one of the conventional methods for virus concentration. This technique has been used to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater. The procedures and seeded surrogate viruses were different among implementers; thus, the reported whole process recovery efficiencies considerably varied among studies. The present study compared five PEG precipitation procedures, with different operational parameters, for the RT-qPCR-based whole process recovery efficiency of murine hepatitis virus (MHV), bacteriophage phi6, and pepper mild mottle virus (PMMoV), and molecular process recovery efficiency of murine norovirus using 34 raw wastewater samples collected in Japan. The five procedures yielded significantly different whole process recovery efficiency of MHV (0.070%-2.6%) and phi6 (0.071%-0.51%). The observed concentration of indigenous PMMoV ranged from 8.9 to 9.7 log (8.2 × 108 to 5.6 × 109) copies/L. Interestingly, PEG precipitation with 2-h incubation outperformed that with overnight incubation partially due to the difference in molecular process recovery efficiency. The recovery load of MHV exhibited a positive correlation (r = 0.70) with that of PMMoV, suggesting that PMMoV is the potential indicator of the recovery efficiency of SARS-CoV-2. In addition, we reviewed 13 published studies and found considerable variability between different studies in the whole process recovery efficiency of enveloped viruses by PEG precipitation. This was due to the differences in operational parameters and surrogate viruses as well as the differences in wastewater quality and bias in the measurement of the seeded load of surrogate viruses, resulting from the use of different analytes and RNA extraction methods. Overall, the operational parameters (e.g., incubation time and pretreatment) should be optimized for PEG precipitation. Co-quantification of PMMoV may allow for the normalization of SARS-CoV-2 RNA concentration by correcting for the differences in whole process recovery efficiency and fecal load among samples.


Subject(s)
Bacteriophages , COVID-19 , Murine hepatitis virus , Animals , Humans , Mice , Polyethylene Glycols , RNA, Viral , SARS-CoV-2 , Tobamovirus , Wastewater
4.
5.
Sci Total Environ ; 767: 145124, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1039559

ABSTRACT

An effective early warning tool is of great administrative and social significance to the containment and control of an epidemic. Facing the unprecedented global public health crisis caused by COVID-19, wastewater-based epidemiology (WBE) has been given high expectations as a promising surveillance complement to clinical testing which had been plagued by limited capacity and turnaround time. In particular, recent studies have highlighted the role WBE may play in being a part of the early warning system. In this study, we briefly discussed the basics of the concept, the benefits and critical points of such an application, the challenges faced by the scientific community, the progress made so far, and what awaits to be addressed by future studies to make the concept work. We identified that the shedding dynamics of infected individuals, especially in the form of a mathematical shedding model, and the back-calculation of the number of active shedders from observed viral load are the major bottlenecks of WBE application in the COVID-19 pandemic that deserve more attention, and the sampling strategy (location, timing, and interval) needs to be optimized to fit the purpose and scope of the WBE project.


Subject(s)
COVID-19 , Pandemics , Humans , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL